脑核磁双侧海马回饱和

治疗癫痫海马体切除-海马切除术

大脑海马是位于脑颞叶内的一个部位的名称,人有两个海马,分别位于左右脑半球。它是组成大脑边缘系统的一部分,担当着关于记忆以及空间定位的作用。名字来源于这个部位的弯曲形状貌似海马。

在阿兹海默病中,海马是首先受到损伤的区域:表现症状为记忆力衰退以及方向知觉的丧失。大脑缺氧(缺氧症)以及脑炎等也可导致海马损伤。

在动物解剖中,海马属于脑的演化过程中最古老的一部分。来源于旧皮质的海马在灵长类以及海洋生物中的鲸类中尤为明显。虽然如此,与进化树上相对年轻的大脑皮层相比,灵长类动物尤其是人类的海马在端脑中只占很小的比例。相对新皮质的发展,海马的增长在灵长类动物中的重要作用是使得其脑容量显著增长。

海马是哺乳类动物的中枢神经系统中的脑的部分(大脑皮质)中被最为详细研究过的一个部位。

在解剖学以及组织学上,海马具有一目了然的明确构造。海马内部有形成形态美观的层面。也就是神经细胞的细胞体与其神经网区域呈层状排列。

海马,是被称作“海马区”(hippocampal region)的大脑边缘系统的一部分。海马区可分为:齿状回(dentate

gyrus)、海马、下托(subiculum)、前下托(presubiculum)、傍下托(parasubiculum)、内嗅皮质

(entorhinal cortex)。这之中齿状回、海马、下托的细胞层为单层,合称“海马结构(hippocampal

formation)”,其上下夹有低细胞密度层和无细胞层。此外的部位有复数的层面构成。齿状回与海马的单层构造对神经解剖学以及电生理学的研究进步作

出了贡献。

20世纪初,开始有科学家认识到海马对于某些记忆以及学习有着基本的作用。特别是1957年Scoville和Milner报告了神经心理学中很重

要的一个病例。这是来自一位被称为H.M.的病者的报告,H.M.要算是神经心理学的领域之中被检查得最详细的人物。由于长期的癫痫症状,医生决定为他进

行手术,切除了颞叶皮层下一部份的边缘系统组织,其中包括了两侧的海马区,手术后癫痫的症状被有效控制,但自此以后H.M.失去了形成新的陈述性长时记忆

的能力。这个发现变成了让许多人想了解海马区在记忆及学习机制的契机,而成为一种流行,无论在神经解剖学、生理学、行为学等等各种不同领域,都对海马区做

了相当丰富的研究。现在,海马区与记忆的关系已经为人所了解。

许多人对海马区与癫痫发作的关系也有很浓厚的兴趣。海马区在脑中为发作阈值低的部位。因为几乎所有癫痫患者的发作皆由海马区所起始,像这类以海马区

为主的发作,有许多的情形是很难以药物治疗的。而且,海马区中有一部分,尤其是内嗅皮质,为阿尔兹海默氏症最先产生病变的地方,海马区也显示出容易因贫

血、缺氧状态而受伤害。

海马区在解剖学解剖学以及机能构造上都是其它大脑皮质系统的研究样本。大脑皮质在最近开始被关注与研究,现在已知的关于中枢神经系统的条目#突触传导的见解多受益于海马区的研究。而海马区的相关知识则多源于齿状回与海马的标本。

心理学家与神经学家对海马的作用存在争论,但是都普遍认同海马的重要作用是将经历的事件形成新的记忆(情景记忆或自传性记忆)。一些研究学者认为应该将海马看作对一般的陈述性记忆起作用内侧颞叶记忆系统的一部分(陈述性记忆指的是那些可以被明确的描述的记忆,如“昨天晚饭吃了什么”这样的关于经历过的事情的情景记忆,以及“地球是圆的”这样的关于知识的概念记忆)。

有迹象显示,虽然这些形式的记忆通常能终身持续,在一系列的记忆强化以后海马便中止对记忆的保持。海马的损伤通常造成难以组织新的记忆(顺行性失忆症),而且造成难以搜索过去的记忆(逆行性失忆症)。

尽管这样的逆行性效果通常在脑损伤的很多年之前就开始扩展,一些情况下相对久远一些的记忆能够维持下来。这表明海马将巩固以后的记忆转入了脑的其他的部

位。但是,旧的记忆是如何储存的要用实验来检测的话存在一些难点。另外,在一些逆行性失忆症案例中,在海马遭受损伤的数十年前的记忆也受到了影响,导致了

这一关于旧的记忆的观点的争议。

海马的损伤不会影响某一些记忆,例如学习新的技能的能力(如学习一种乐器),将设这样的能力依靠的是另外一种记忆(程序记忆)和不同的脑区域。有迹象表明著名的病人HM(作为治疗癫痫病的手段他的内侧颞叶被切除)有组织新的概念记忆的能力。

有些证据提供以下的线索:空间讯息的储存与处理牵涉到海马体。老鼠实验的研究显示,海马体的神经元有空间放电区,这些细胞称为地点细胞(place cells)。如果老鼠发现自己处在某个地点,不论该老鼠移动的方向为何,有些细胞会发电,而大部分的细胞至少会对头的方向、移动方向感到敏感。在老鼠身上,有些细胞称为分野细胞(splitter cells),该种细胞的发电取决于动物的近期经验(回顾记忆;retrospective memory)、或是期待即将的为来(前瞻记忆;prospective memory)。根据不同的身处地点,不同的细胞会发电;因此,只要观察细胞的发电情形,就可能指出动物身处的地点。在人类身上,当人们在虚拟世界的城镇里在寻找方向时,就会牵涉到“地点细胞”。 这样的发现是源于如下的研究:在严重癫痫患者的大脑里面植入电极,当作是患者在手术过程中诊断的方式。

发现了“地点细胞”,让世人觉得海马体可能扮演“认知地图”(cognitive map)的角色,而认知地图就是环境格局的神经重现。然而,针对这样的观点,近期的证据提出怀疑,并且指出海马体对于“寻找方向”(navigation[来源请求])更根本的过程非常重要。尽管如此,动物实验显示,即使要完成简单的空间记忆活动,健全的海马体是必要的(譬如把目的地藏住,要动物找路回去)。

若海马体不健全,人类可能就无法记住曾经去过的地方、以及如何前往想去的地点。研究人员相信,若要在熟悉环境之间找出捷径、以及新的路线,海马体扮

演极重要的角色。针对这样寻找方向的能力,有些人比其他人能力强;此外,大脑显影研究显示,这些寻找方向能力比较好的人,在寻找方向时,他们的海马体比较

活跃。

伦敦出租车司机必须要记住很多地点,并且知道这些地点之间最直接的路线(他们必须通过严格的考试,该考试名为“知识”,英文名是The Knowledge,才能得到伦敦著名的黑色出租车black cab的驾驶执照)。在伦敦大学学院(Macguire

et al,

2000)的研究显示,相较于一般民众,伦敦出租车司机的海马体体积较大,至于更有经验的出租车司机的海马体体积又更大。然而,有较大的海马体是否有助于

成为出租车司机、或是成为出租车司机或以找捷径为生是否能够使得一个人的海马体变大仍待研究。

在印第安那大学进行的老鼠实验提出了如下的可能性:在反复的迷宫实验里观察老鼠的表现,海马体的型态跟“两性异形”息息相关。对于将地点空间化、找出自己所在,公老鼠表现比较好,因为公老鼠的海马体体积比较大。

癫痫和胃有什么关系? 如果海马体硬化这和胃更没关系啊?

医学上癫痫跟胃真扯不上什么关系,如果说癫痫发作时引起胃部不适,倒还有可能,因为脑神经细胞同步放点刺激,引起迷走,交感神经兴奋,引起胃部不适。不过,真没有什么研究,以及依据证明这两个有什么关系。如果确有海马体硬化,做个脑电图,证实癫痫确实由于海马体硬化引起,倒是可以手术治疗。如果顺利,癫痫可以治愈。

海马体引起癫痫如何治疗

海马体引起癫痫(羊癫疯)如何治疗?癫痫(羊癫疯)病的专家介绍说:首先想告诉大家的就是,无论是海马体引起癫痫(羊癫疯)还是遗传得的癫痫(羊癫疯),都是能够治好的。但是治好治不好的原因就在于。一个好的会根据患者的具体情况来决定采用哪种方法治疗,因此患者提出海马体引起癫痫(羊癫疯)如何治疗的问题,我建议患者只要找对,就能解决这个问题。推见朗读:多喝水对癫痫(羊癫疯)患者是有害的  海马体引起癫痫(羊癫疯)如何治疗?癫痫(羊癫疯)病的专家介绍:在治疗癫痫(羊癫疯)病的过程中,选择是格外重要的一步,很多人因为选择错了,导致了钱没少花,病却得不到有效治疗。更甚至造成病情恶化。所以患者应该学会自己判定的好坏,只要找到好的,它就具备多种多样的治疗方法,根据你的病情在选择一种,就可以治好。通选择可以参照一下方法。  1、癫痫(羊癫疯)病的专家说看名气,一家好的,总会在当地患者中留下好的印象,也就是口碑较好。去就诊之前,不妨上网搜索一番,或多打听一些人,初步了解一下这家的情况。  2、看看的实力:

为什么看了本书没过多久就淡忘了

因为人的脑袋里有一种叫海马体的东西,主管人类正接触或已接触时间不长的主要记忆,有点像是计算机的内存,将几周内或几个月内的记忆鲜明暂留,以便快速存取。

记忆其实就是神经细胞之间的连结形态。然而,储存或抛掉某些信息,却不是出自有意识的判断,而是由人脑中的海马区来处理。海马区在记忆的过程中,充当转换站的功能。当大脑皮质中的神经元接收到各种感官或知觉讯息时,它们会把讯息传递给海马区。假如海马区有所反应,神经元就会开始形成持久的网络,但如果没有通过这种认可的模式,那么脑部接收到的经验就自动消逝无踪。

也就是说你要反复、有间断地复习你所看到的,人脑才会把你所看到的记住,反复复习几次就能终身记得(每次要隔一段时间),建议你把看过觉得有意义的书再重新翻几遍,品味书中别样趣味,便能使看书真正使你受益

普及一下海马体:

海马体(Hippocampus),又名海马回、海马区、大脑海马,海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中,如果一个记忆片段,比如一个电话号码或者一个人在短时间内被重复提及的话海马体就会将其转存入大脑皮层,成为永久记忆。

由于形状和海马相似,因此被称为海马体(Hippocampus)。

机理:记忆其实就是神经细胞之间的联结形态。然而,储存或抛掉某些信息,却不是出自有意识的判断,而是由人脑中的海马区来处理。海马区在记忆的过程中,充当转换站的角色,当大脑皮质中的神经元接收到各种感官或知觉讯息时,它们会把讯息传递给海马区。假如海马区有所反应,神经元就会开始形成持久的网络,但如果没有通过这种认可的模式,那么脑部接收到的信息就自动消逝无踪。

机能原理:

海马区的机能是主管人类正接触或已接触时间不长的主要记忆,有点像是计算机的内存,将几周内或几个月内的记忆鲜明暂留,以便快速存取。记忆其实就是神经细胞之间的连结形态。然而,储存或抛掉某些信息,却不是出自有意识的判断,而是由人脑中的海马区来处理。海马区在记忆的过程中,充当转换站的功能。当大脑皮质中的神经元接收到各种感官或知觉讯息时,它们会把讯息传递给海马区。假如海马区有所反应,神经元就会开始形成持久的网络,但如果没有通过这种认可的模式,那么脑部接收到的经验就自动消逝无踪。日常生活中的短期记忆都储存在海马区中,如果一个记忆片段,比如一个电话号码或者一个人在短时间内被重复提及的话海马区就会将其转存入大脑皮层,成为永久记忆。所以海马区比较发达的人,记忆力相对会比较强一些。存入海马区的信息如果一段时间没有被使用的话,就会自行被“删除”,也就是被忘掉了。而存入大脑皮层的信息也并不就是永久,如果你长时间不使用该信息的话,大脑皮层也许就会把这个信息给“删除”掉了。有些人的海马区受伤后就会出现失去部分或全部记忆的状况。这全取决于伤害的严重性,也就是海马区是部分失去作用还是彻底失去作用。

许多人对海马区与癫痫发作的关系也有很浓厚的兴趣。海马区在脑中为发作阈值低的部位。因为几乎所有癫痫患者的发作皆由海马区所起始,像这类以海马区为主的发作,有许多的情形是很难以药物治疗的。而且,海马区中有一部分,尤其是内嗅皮质,为阿尔兹海默氏症最先产生病变的地方,海马区也显示出容易因贫血、缺氧状态而受伤害。

20世纪初,开始有科学家认识到海马对於某些记忆以及学习有着基本的作用。特别是1957年Scoville和Milner报告了神经心理学中很重要的一个病例。这是来自一位被称为H.M.的病者的报告,H.M.要算是神经心理学的领域之中被检查得最详细的人物。由於长期的癫痫症状,医生决定为他进行手术,切除了顳叶皮层下一部份的边缘系统组织,其中包括了两侧的海马区,手术後癫痫的症状被有效控制,但自此以後H.M.失去了形成新的陈述性长时记忆的能力。这个发现变成了让许多人想了解海马区在记忆及学习机制的契机,而成为一种流行,无论在神经解剖学、生理学、行为学等等各种不同领域,都对海马区做了相当丰富的研究。经过如此研究,海马区与记忆的关系已经为人所了解。

美国生物科技网在2003年6月10日报道,美国哈佛大学(Harvard University)与纽约大学(NYU)科学家共同发现了大脑海马区的运转机制——大脑海马区是帮助人类处理长期学习与记忆声光、味觉等事件(即叙述性记忆)的主要区域。借着研究海马区神经元的活动情形,研究人员发现大脑叙述性记忆形成的方法。而这个发现对于证明海马区记忆学习的可塑性,也提供了最有利的证据。从1950年代起,科学家就已经注意到大脑海马区与记忆间的关系。但却一直无法把记忆与海马区间的神经活动相连结。如果切除掉海马区,那么以前的记忆就会一同消失。但是“海马区的神经细胞又是如何把信息固定下来的”这个问题一直没能解决。科学家发现一些分子参与到了记忆的形成。此外,神经细胞突触的形成也与记忆相关联。但是,科学家依然对于记忆的运作机制的了解还不够——而这一机制对于理解我们自身是非常重要的。纽约大学研究人员利用电极(electrodes),监控学习中的猴子大脑神经活动的情形。之后再用哈佛大学研究人员研发出的“动力评估演算系统”(dynamic estimation algorithms)分析记录下来的行为与神经信息。