遗传的反义词是什么

仙家治疗癫痫-仙家治各种疑难杂症

释义  词目:遗传

拼音:yí chuán

基本解释  ⒈[heredity]:通过细胞染色体由祖先向后代传递的品质

遗传学

⒉[inheritance]:先人所流传下来的

详细解释  ⒈犹留传。

《史记·扁鹊仓公列传》:“ 庆 有古先道遗传 黄帝 、 扁鹊 之脉书,五色诊病,知人生。” 宋 林逋 《伤白积殿丞》诗:“遗传得谁脩阙下,孤坟应祇客江边。”《二刻拍案惊奇》卷十八:“这迷而不悟,却是为何?只因制造之药,其方未尝不是仙家的遗传。” 罗家伦 《是爱情还是苦痛》:“他说:‘我听得长辈说,女子总是靠丈夫的。’我好容易收来一点爱情,把他这一句遗传的话,又吓走了一大半。”

⒉指遗留下来的传闻。

北魏郦道元 《水经注·易水》:“余按遗传,旧迹多在 武阳 ,似不饯此也。” 明 李诩 《戒庵老人漫笔·陈同父》:“自是始欲纂集异闻,为《中兴遗传》,然犹恨闻见单寡,欲从先生故老详求其事。”

⒊谓生物体的构造和生理机能由上一代传给下一代。

艾思奇 《辩证唯物主义历史唯物主义》第四章:“在自然界中,吸引和排斥,阴电和阳电,化合和分解,遗传和变异等对立面的互相作用,也同样包含着斗争。”如:任何一种植物的后代与它的亲代总是基本相似的,这种现象叫做遗传。

⒋谓人的气质、品德、能力等后天的东西受上代的影响而在后代身上体现出来。

洪深《**戏剧的编剧方法》第四章:“即以气质而论,决不是一个人遗传有好的或坏的气质。” 郁达夫 《出奔》:“结婚之后的 董婉珍 ,处处都流露了她的这一种自父祖遗传下来的小节的伶俐。” 陈学昭《工作着是美丽的》上卷二四:“在精明能干这一点上,她的三个孩子都得了母亲的优良遗传。”

遗传:幸福在某种程度上是与生俱来的。人类“幸福感知点”的敏感程度有90%是由基因决定的,同时也取决于父母的正确见识、判断力以及良好的训练和教育。

特点  遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:[1]

1、 遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。

2、 遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。

3、 遗传算法使用多个点的搜索信息,具有隐含并行性。

4、 遗传算法使用概率搜索技术,而非确定性规则。

应用概述  由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:函数优化  函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。组合优化  随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求

遗传与生育

这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

环境外因  就外因来看,从胎儿期到以后儿童成长的过程中,多物理、化学、生物学等有害因素会影响到儿童的大脑,造成精神心理的发育异常,如母亲妊娠期间接触有毒害的物质、服用某些药物、某些病毒感染、精神受刺激,胎内或产后窒息、高热抽搐、中毒(如铅中毒、一氧化碳中毒)、营养不良、脑外伤、脑炎、癫痫、神经发育不完善等许多疾病。影响儿童心理发展的另一重要因素是环境因素,主要是家庭教育和社会环境。家庭文化层次、经济水平、家庭结构、家庭关系、大人对孩子的抚养态度、幼儿园和学校的环境、老师的教育态度、社会文化背景、居住地区的环境等都能影响孩子的心理。

生物因素决定儿童智能发育的最大限度,而环境因素则决定智能发挥的程度,儿童先天情况良好但后天环境不良、教育落后,也可使孩子发育落后;反之,虽先天不足,但后天及时干预、教育得当也可使孩子得到良好的发展。良好的环境有助于孩子心理的健康发展,在民主、和睦、生活丰富多彩的环境中长大的孩子,大多自信、活泼、独立;而在专断、关系紧张、缺乏爱的环境中长大的孩子,容易形成胆小、自卑、孤僻或叛逆的性格。武汉市儿童医院康复科林俊主任分析,自2007年以来造成儿童高比例的心理行为问题原因有多方面,首先,由于独生子女的生活空间狭小,接触到同龄孩子机会较少,加上家长过度保护,身心得到锻炼的机会也较以前减少;另外,家长缺乏相关的儿童心理卫生知识,一方面对孩子的心理问题视而不见,一方面又不知如何正确引导孩子;同时儿童教育工作者也应注意对孩子充满爱心,一视同仁,多鼓励、表扬进步而不是挫伤孩子的自尊心。

现状  进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。

儿童孤独症可能来自遗传

随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的只能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。

遗传

1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。

D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。

H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。

遗传

国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题

2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。

2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。一般算法  

遗传

遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:[2]初始种群  初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工

遗传

智能系统的情况不一样,在那里问题的初始状态已经给定了。评估适应度  对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。繁殖  带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。下一代  如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。并行计算  非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。

基本框架GA的流程图  GA的流程图如下图所示编码  遗传算法不能直接处理问题空间的参数,必须把它们转换成遗传空间的由基因按一定结构组成的染色体或个体。这一转换操作就叫做编码,也可以称作(问题的)表示(representation)。

评估编码策略常采用以下3个规范:

a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。

b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。

c)非冗余性(nonredundancy):染色体和候选解一一对应。

目前的几种常用的编码技术有二进制编码,浮点数编码,字符编码,变成编码等。

而二进值编码是目前遗传算法中最常用的编码方法。即是由二进值字符集{0,1}产生通常的0,1字符串来表示问题空间的候选解。它具有以下特点:

a)简单易行;

b)符合最小字符集编码原则;

c)便于用模式定理进行分析,因为模式定理就是以基础的。适应度函数  进化论中的适应度,是表示某一个体对环境的适应能力,也表示该个体繁殖后代的能力。遗传算法的适应度函数也叫评价函数,是用来判断群体中的个体的优劣程度的指标,它是根据所求问题的目标函数来进行评估的。

遗传算法在搜索进化过程中一般不需要其他外部信息,仅用评估函数来评估个体或解的优劣,并作为以后遗传操作的依据。由于遗传算法中,适应度函数要比较排序并在此基础上计算选择概率,所以适应度函数的值要取正值.由此可见,在不少场合,将目标函数映射成求最大值形式且函数值非负的适应度函数是必要的。

适应度函数的设计主要满足以下条件:

a)单值、连续、非负、最大化;

b) 合理、一致性;

c)计算量小;

d)通用性强。

在具体应用中,适应度函数的设计要结合求解问题本身的要求而定。适应度函数设计直接影响到遗传算法的性能。初始群体的选取  遗传算法中初始群体中的个体是随机产生的。一般来讲,初始群体的设定可采取如下的策略:

a)根据问题固有知识,设法把握最优解所占空间在整个问题空间中的分布范围,然后,在此分布范围内设定初始群体。

b)先随机生成一定数目的个体,然后从中挑出最好的个体加到初始群体中。这种过程不断迭代,直到初始群体中个体数达到了预先确定的规模。

遗传操作  遗传操作是模拟生物基因遗传的做法。在遗传算法中,通过编码组成初始群体后,遗传操作的任务就是对群体的个体按照它们对环境适应度(适应度评估)施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度而言,遗传操作可使问题的解,一代又一代地优化,并逼进最优解。

遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover);变异(mutation)。这三个遗传算子有如下特点:

个体遗传算子的操作都是在随机扰动情况下进行的。因此,群体中个体向最优解迁移的规则是随机的。需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。遗传操作进行的高效有向的搜索而不是如一般随机搜索方法所进行的无向搜索。

遗传操作的效果和上述三个遗传算子所取的操作概率,编码方法,群体大小,初始群体以及适应度函数的设定密切相关。[3]选择  从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproduction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法、局部选择法。

其中轮盘赌选择法 (roulette wheel selection)是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为

显然,概率反映了个体i的适应度在整个群体的个体适应度总和中所占的比例.个体适应度越大。其被选择的概率就越高、反之亦然。计算出群体中各个个体的选择概率后,为了选择交配个体,需要进行多轮选择。每一轮产生一个[0,1]之间均匀随机数,将该随机数作为选择指针来确定被选个体。个体被选后,可随机地组成交配对,以供后面的交叉操作。交叉  在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。

交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。根据编码表示方法的不同,可以有以下的算法:

a)实值重组(real valued recombination)

1)离散重组(discrete recombination);

2)中间重组(intermediate recombination);

3)线性重组(linear recombination);

4)扩展线性重组(extended linear recombination)。

b)二进制交叉(binary valued crossover)

1)单点交叉(single-point crossover);

2)多点交叉(multiple-point crossover);

3)均匀交叉(uniform crossover);

4)洗牌交叉(shuffle crossover);

5)缩小代理交叉(crossover with reduced surrogate)。

最常用的交叉算子为单点交叉(one-point crossover)。具体操作是:在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。下面给出了单点交叉的一个例子:

个体A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新个体

个体B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新个体变异  变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:

a)实值变异;

b)二进制变异。

一般来说,变异算子操作的基本步骤如下:

a)对群中所有个体以事先设定的编译概率判断是否进行变异;

b)对进行变异的个体随机选择变异位进行变异。

遗传算法导引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。

遗传算法中,交叉算子因其全局搜索能力而作为主要算子,变异算子因其局部搜索能力而作为辅助算子。遗传算法通过交叉和变异这对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。所谓相互配合.是指当群体在进化中陷于搜索空间中某个超平面而仅靠交叉不能摆脱时,通过变异操作可有助于这种摆脱。所谓相互竞争,是指当通过交叉已形成所期望的积木块时,变异操作有可能破坏这些积木块。如何有效地配合使用交叉和变异操作,是目前遗传算法的一个重要研究内容。

基本变异算子是指对群体中的个体码串随机挑选一个或多个基因座并对这些基因座的基因值做变动(以变异概率P.做变动),(0,1)二值码串中的基本变异操作如下:

基因位下方标有*号的基因发生变异。

变异率的选取一般受种群大小、染色体长度等因素的影响,通常选取很小的值,一般取0.001-0.1。终止条件  当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。

特点分析  遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示出明显的优势。与传统的搜索方法相比,遗传算法具有如下特点:

a)搜索过程不直接作用在变量上,而是在参数集进行了编码的个体。此编码操作,使得遗传算法可直接对结构对象(集合、序列、矩阵、树、图、链和表)进行操作。

b)搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。

c)采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则。

d)对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其它辅助信息,适应范围更广。

术语说明  由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,下面是我们将会用来的一些术语说明:

染色体(Chronmosome)

染色体又可以叫做基因型个体(individuals),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。

基因(Gene)

基因是串中的元素,基因用于表示个体的特征。例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。它们的值称为等位基因(Allele)。

基因地点(Locus)

基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。基因位置由串的左向右计算,例如在串 S=1101 中,0的基因位置是3。

基因特征值(Gene Feature)

在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。

适应度(Fitness)

各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率。

乙肝会遗传吗  经常听到有人说,某某人的乙肝是其父母遗传而得的,既没有办法治疗,也没有办法预防。这种说法实际上是部分人的一种误解,是没有任何科学根据的。要知道所谓遗传性疾病是由于父代或母代的基因缺陷或异常,由精子或卵子细胞将缺陷或异常基因传给子代而产生的疾病。而乙肝感染者没有任何基因的缺陷或异常,感染他人也不存在异常基因的参与,因此乙肝也就不属于遗传性疾病。

我们认为,这种说法实际上是对乙肝母婴传播的一种错误理解。乙肝的母婴传播是我国乙肝感染很主要的一种方式。前几年的统计资料显示,我国育龄妇女(25 ~35岁)血中HBsAg的携带率为7%左右,其中HBeAg阳性者占25%。HBeAg阳性母亲,如果不采取任何保护性措施的话,其分娩的婴儿成为HBsAg阳性的可能性在85%以上,而且这部分感染者可长期携带病毒,并且易发展为慢性乙型肝炎。许多家庭子女中出现数例乙肝,大多是由母婴传播所致。这个问题已经引起我国有关部门的极大重视,并采取了极为有效的预防性措施予以解决。随着乙肝疫苗和高效价抗乙肝免疫球蛋白的广泛应用,目前我国乙肝阳性母亲所生婴儿中HBsAg阳性率已下降至1%~2%。可见乙肝绝不像某些人所说的那样是无法预防的。我们相信,随着科技水平的发展和新药的研发,除预防外,乙肝的治疗也会有所突破的

北一女子拜“仙家师父”治病致,为何现在还有人相信封建迷信?

因为这些人不愿意面对现实,所以至今都比较相信封建迷信。

在如今的社会中,很多人都比较相信科学。但是在这种情况下,仍然存在一部分人比较相信封建迷信的现象。而且这些人会不惜代价去相信一些封建迷信的内容。

一女子拜?仙家师傅?治病治。

有一名家住湖北省的女子,因为自己患有癫痫病。然后选择拜一位?仙家师傅?任某。并且在经过任某一系列的检查之后,告诉这名女子并没有病,而且也不需要进行服药。并且在整个过程中任某也收取了相对的费用。而这名女子在相信了任某的话之后,最终在没有去医院治疗的情况下去世。而且这起案件在当地也引起了很大的影响力,在法院对这起案件进行审判的过程中,处罚任某有期徒刑三年,并且处罚5000元的人民币。

现在还有人相信封建迷信的原因。

从这件事情中,很多网友都觉得这名女子不应该相信封建迷信。但是从目前的社会情况来看,除了这名女子之外还有很多人比较相信封建迷信。而这些人之所以比较相信封建迷信,主要还是因为不愿意面对现实。比如说在现实生活中遇到了一些难以解决的困难之后,就会听信封建迷信的内容。并且认为自己通过这种方式就可以解决困难。

我个人的看法。

我个人觉得我们每一个人都应该相信科学。因为所有的事情只有通过科学的方式才能够进行解决。特别是生病了之后,就应该选择第一时间去医院进行治疗。因为医院里面的医生比较专业,而且医院里面的仪器也非常先进。只有在医院才能够将自己的病情进行治愈。而不是选择去相信一些封建迷信的内容,让自己在进行治病的过程中走很多弯路。

人工种植天麻自己家的地能种植吗

1.天麻历史名人和天麻,《唐宫惊变》记载:唐明皇李隆基,每日清晨必调服,一盅天麻粉后方临朝,视之为滋补首选,益寿珍品。光绪年间,慈禧太后患面风,用天麻配伍其它祛风活络药,研末酒调,热熨患部;光绪头痛眩晕,也常用天麻配伍其它相关药物煎水洗头。清朝著名大医张志聪赞道:天麻功同五芝,力倍五参,为仙家服食上品。2.天麻的中医认识概述天麻是一种治疗眩晕病的重要药物,其功主要为平肝息风。凡肝阳上亢所致的头晕目眩、天旋地转、面色通红、头重脚轻;肝风内动引起的高热动风、惊痫抽搐、角弓反张等症,以天麻为主,适当配伍它药服用,确有良效;由于天麻治疗眩晕病的作用明显,疗效可靠,人们对它信誉很高,所以许多人把它作为珍贵的补品。⒈天麻具有非常明显的镇痛作用,临床用于治疗血管性头痛、三叉神经痛、眶上神经痛、坐骨神经痛等各类神经痛,其有效率在90%以上。 ⒉天麻具有镇静催眠作用,大量实验证明其作用机理与天麻抑制中枢肾上腺素能神经末梢对多巴胺和去甲肾上腺素的重摄取和储存有关。它可降低中枢神经系统的兴奋性,对抗咖啡因引起的兴奋,用药后,α-波指数减低,用药前后对比ρ<0.05,使正常成人脑电图α-波出现睡眠波型。 天麻具有扩张血管,增加血管弹性的功效,能改善脑基底动脉供血不足,从而达到促智、增强记忆之功效。 ⒊天麻具有防治老年性痴呆的作用,这主要是天麻在机体内能降低脑血管阻力,增加脑血流量,使脑循环得到改善。 天麻对于抑郁症的对症治疗有独特的功效,在缓解病人的精神压力、情绪不稳定及思维迟缓有十分重要的作用,特别对“激动型”抑郁症患者所表现的言语动作明显增加、焦虑、恐惧等情形尤为有效。3.天麻入药的简要历史天麻(Gastrodla elata Bl.),是一种十分有趣的药用植物。最早见载于《神农本草经》。该书据我国著名的自然科学史家夏纬瑛考证,成书于东汉末年。记载此药有“主杀鬼精物”的功能。就是说天麻是治疗头痛的良药。俗话说“头痛鬼捏着”。吃了天麻头不痛了,恶鬼不是给赶跑了吗?由此可见,天麻入药在我国已有两千年的历史了。天麻是适应冷湿环境的兰科植物,高寒的昭通山区大都适应天麻的生长,野生天麻在以前是十分丰富的。昭通是优质乌天麻(G、elata Bl、f. glaucaS.Chow)的主要产区。小草坝天麻闻名于世已有上百年的历史。4.天麻的药用历史天麻在我国具有二千多年的药用历史,在我国历代本草医书中,对天麻的名称、产地、形态、采集时间、加工炮制及用途都有非常精辟的论述, 但对天麻的人工栽培本草农书未有记载. 天麻的异名繁多,《神农本草经》中称赤箭,别名离母、鬼督邮。此外还有神草(吴普本草)、赤箭脂、定风草(药性论)、离母(图经本草)。 历代本草中天麻的异名还有木浦、石箭、分离草、御风草、白龙皮、神草、神草、独摇芝、回笼籽、仙人脚等。天麻是名贵的中药材,是一种特殊形态的兰科植物,无根、无绿叶、不能进行光合作用,为药中上品,它具有增强记忆、益气固精、滋阴补血、平肝息风、降压降脂、镇痛、止晕、止痉、祛风湿、强筋骨等多种功效。近代医学研究表明, 天麻用于航空人员脑保健,治疗老年性痴呆症和失眠症有显著疗效,服用天麻制品无副作用,久服可延年益寿。我国对天麻无性繁殖、有性繁殖的研究,分别始于50年代末和60年代末。无性繁殖多代后,其种性退化,产量、质量、抗逆性随之下降;而有性繁殖的研究,在70年代虽获国家重大科技成果发明奖,但由于有性繁殖因遗传基因所限,又制约了新品种的创新。90年代初,我国的杂交天麻研究处于起步阶段,杂交品种的一些基础研究尚属空白,许多技术难题还需攻关,面对全新课题,不少农林科技人员大胆涉足杂交天麻的科研领域。我公司的天麻是农技师团队,通过控制不同的野生天麻的生长时间,使其不同生长周期的野生天麻在同一时间开花,再通过人工授粉,改良,人工杂交,形成的新一代天麻原种,本公司的天麻,具有产量高,抗病虫害力强,生长周期短,适应环境广,形态好,单个体积大,繁殖力强,折干率高,药用价值高,即天麻素含量高达0.08%,比普通天麻高60.24%。新一代杂交萌发原种,纯度高达100%,成活率98%,每平方米产量可达到7.5公斤左右,比普通种植户的天麻高出4公斤,大大的增加了种植收益。二、天麻用途天麻的药理研究表明:有祛风定惊、镇静止晕、通径活血、抗炎、镇痛、抗衰老、改善学习记忆、强筋壮骨等功效,天麻多糖具有增强机体非特异性免疫及细胞免疫的作用,近年研究证明,天麻注射液有扩张血管、增强血管弹性的作用,对治疗眩晕和脑苦底动脉供血不足引起的神经症状和心血管系统疾病有显著疗效,用于治疗冠心病、心绞痛和高血压病。将天麻用于高空飞行员的脑保健药物,可以增强神经的分辨能力。日本医学近年来用天麻治疗老年性痴呆症,总有效率达81.8%。天麻素注射液肌肉注射,治疗以头痛、头晕睡眠障碍为主要症状的脑外伤综合症,及三叉神经痛、坐骨神经痛、心绞痛为主的冠心病、神经衰弱、血管性头痛和抑郁性神经症、眩晕症、癫痫、高血压、手足不遂、风湿腰痛、眼花耳鸣、肢体麻木等。天麻的药用剂型:汤、散、丸、膏、酒、酊、胶囊、冲剂、糖浆、及注射液等。主要产品有天麻丸、天麻注射液、天麻酒、天要定脑宁、天麻蜂王精、天麻杜仲丸、天麻益脑冲剂、天麻鸡精。天麻不仅具有较高的药用价值,还可以作为药膳保健食用,常用天麻煮鸡蛋、天麻枸杞煮猪脑、天麻蒸肉、天麻炖鸡、天麻煲汤煮粥。天麻的营养丰富、食用方便、风味独特。既满足口福也起到了滋补保健治病的作用。以天麻为主要原料制作食谱已经成为宾馆、酒楼的特色佳肴。三、天麻的市场前景 ①天麻Gastrodia elata B1以块茎入药,全身是宝,具有熄风镇痉的功能。主治:风湿腰膝痛、肢体麻木,眩晕头痛,小儿惊痫等病症。

②天麻主要分布在北纬24°-45°、东经94°-142°的范围内。其中包括我国大部分地区全球范围除朝鲜半岛、日本及俄罗斯远东地区有少量分布外,天麻均产自我国。随着人工天麻种植技术的不断提高,人为的调温、湿度、控制生长环境,在我国天麻种植发展已经没有严格的区域界限。

③发展天麻人工栽培,既可现代工厂化集约批量生产,也可分散种植,人为控制天麻生长发育的各种因素,不受自然旱涝影响,减少杂菌感染,产量稳定可靠。发展室内天麻种植,不占耕地、取材方便、设备简单、投资小、收益高。

进入21世纪后,随着人们生活水平提高,健康意识的增加,天麻产品由过去的单一的药用,发展到饮食及滋补保健等行业,需求范围逐年不断扩大。尤其从2010年春季,国内用量急骤上升,出口不断增加,货源供不应求,价格连续上涨,因此,市场发展前景非常广阔,是个千载难逢的好机遇!

梦见狐大仙的预兆

1、梦见狐大仙的预兆

基础安定,成功运佳,财利名誉俱得并大发展之势,健康、长寿、幸福之兆,唯若人格或地格若凶数,恐因好大,喜功,行事亦易招败,若无凶数,则可免忧虑。大吉昌

吉凶指数:75(内容仅供参考,不代表本站立场)

2、梦见狐大仙的宜忌

「宜」宜会谈,宜低声哼歌,宜做鬼脸。

「忌」忌施舍,忌探亲,忌念故人。

3、梦见狐大仙是什么意思

恋爱中的人梦见狐大仙,说明虽然目前的对象有两位,最后只能选一位。

本命年的人梦见狐大仙,意味着有处于孤立的情况,宜多反省,改进缺失则无凶灾。

梦见狐大仙,需要你做出抉择的一天。这两天关键的时刻,往往摆在你面前的,是一道单选题。无论选哪一个,你都有自己的顾虑。提醒一下,按照正常程序思考,能帮助你做出明智的选择。最忌讳的,是把自己困在分析推理的圈子里,延误了决策的时机。

做生意的人梦见狐大仙,代表起伏不定,坚持退守,最后得名利。

怀孕的人梦见狐大仙,预示生女,冬春占生男。慎防动胎气。

梦见仙,主有喜庆之事,功名贵显,财利丰亨。

梦见狐大仙,按周易五行分析,吉祥色彩是白色,幸运数字是2,财位在正南方向,桃花位在东南方向,开运食物是大蒜

出行的人梦见古墓大仙,建议遇风则止,延后出发。

本命年的人梦见看大仙,意味着先苦后甘,付出辛劳的代价,往后回收。慎防官讼。

做生意的人梦见黑狐和金狐,代表小心理财可有收获。秋来有利。

本命年的人梦见去看大仙,意味着凡事不要固执,忠实待人顺利如意。少外出。

出行的人梦见黑狐和金狐,建议如期出发顺利。

怀孕的人梦见狐,生男,延后产期出生。

梦见看大仙,忙东忙西、东奔西跑,正好满足了你不安于室的心!谈恋爱请认真点,不要随便找人乱哈啦!新科技、功能超炫的手机让你爱不择手。你会外出处理事情,而且会跑好几个地方。

做生意的人梦见祭拜大仙,代表财利平顺,有口舌是非,秋季有损失。

梦见大仙算命,欲望尤其是性方面的欲望,会让今天的你产生可怕的想法。尝试让自己置身于安静的颜色,如绿色、蓝色的环境中,可以帮助你抛开它们的纠缠。

恋爱中的人梦见大仙驱鬼,说明重新再谈感情的事,一切顺利可成。

梦见仙,主有喜庆之事,功名贵显,财利丰亨。

本命年的人梦见大仙,意味着宽宏大量,万事顺利,勿与人计较则平安无事。

怀孕的人梦见大仙显身,预示生男,慎防流产难养。